
 
 

Abstract 

Automatic tumor segmentation is a crucial step in 
medical image analysis for computer-aided diagno-
sis. Although the existing methods based on convo-
lutional neural networks (CNNs) have achieved the 
state-of-the-art performance, many challenges still 
remain in medical tumor segmentation. This is be-
cause regular CNNs can only exploit translation in-
variance, ignoring further inherent symmetries ex-
isting in medical images such as rotations and re-
flections. To mitigate this shortcoming, we propose 
a novel group equivariant segmentation framework 
by encoding those inherent symmetries for learning 
more precise representations. First, kernel-based 
equivariant operations are devised on every orienta-
tion, which can effectively address the gaps of learn-
ing symmetries in existing approaches. Then, to 
keep segmentation networks globally equivariant, 
we design distinctive group layers with layerwise 
symmetry constraints. By exploiting further symme-
tries, novel segmentation CNNs can dramatically re-
duce the sample complexity and the redundancy of 
filters (by roughly 2/3) over regular CNNs. More 
importantly, based on our novel framework, we 
show that a newly built GER-UNet outperforms its 
regular CNN-based counterpart and the state-of-the-
art segmentation methods on real-world clinical data. 
Specifically, the group layers of our segmentation 
framework can be seamlessly integrated into any 
popular CNN-based segmentation architectures. 

1 Introduction 
Medical imaging has been playing a critical role in the whole 
clinical diagnosis process, especially in today's era when the 
technology for medical imaging is developing rapidly [Ting 
et al., 2018]. To support the clinical diagnosis process effec-
tively, it is imperative to develop automatic and accurate 
medical image segmentation technologies for computer-
aided diagnosis, with lower false positive rate and false neg-
ative rate. In particular, tumor segmentation in CT volumes 

is one of the most challenging tasks in medical image seg-
mentation. Specifically, the main challenge stems from the 
following aspects: (1) the low contrast between tumors and 
their surrounding tissues with similar appearances; (2) the un-
predictability of tumors in location, shape, size, number from 
different patients; (3) the intensity dissimilarity within differ-
ent parts in a tumor; and (4) limited medical data and manual 
errors in pixel-level annotations.  
 Currently, a proven and effective approach to address the 
above challenges is the utilization of Convolutional Neural 
Networks (CNNs) [Zhang et al., 2019]. Based on CNNs, 
many new segmentation models [Mou et al., 2019] have been 
proposed, e.g., the patch-based model, the image-based 
model, the non-local- or the attention- or the context aggre-
gation-based models, and the 3D CNN model. Leaving aside 
their pros and cons, all of these models have partially im-
proved the performance of medical tumor segmentation by 
designing novel network architectures. Most importantly, the 
common trait among these advanced segmentation models is 
that their performance and reliability heavily depend on reg-
ular CNN operations. Nevertheless, as we observe, basic con-
volutional operations can only exploit translational invari-
ance into regular CNNs, while ignoring further inherent sym-
metries in medical images. Taking Figure 1 as an example, 
the upper Res-UNet model based on regular CNNs cannot 
generate consistent predictions for tumor regions when rotat-
ing the same test slice.  
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Figure 1: Equivariance visualization between regular CNNs and 
group CNNs on a test CT slice and its rotated version. Note that 
only segmented tumor regions are shown as outputs for clarity. 



 
 

 In order to equip regular CNNs with more symmetric prop-
erties, three representative solutions have been reported. 
First, the widely used data augmentation, as a common and 
effective method, has been proposed to obtain approximate 
invariance towards various transformations [Ciresan et al., 
2013]. Data augmentation can constrain the network training 
process as a whole to learn more filters for different transfor-
mations and thus improve performance, however, (Gap 1) the 
size of learned CNN models grows bigger leading to higher 
redundancy of kernels and higher overfitting risk. More im-
portantly, (Gap 2) this soft constraint does not guarantee in-
variance of well-trained CNNs on the test data or even on the 
training data. Second, instead of implicitly learning symme-
tries by rotating input images, existing rotation equivariant 
networks with explicitly constraining feature maps can main-
tain multiple rotated feature maps at each layer and are easy 
to be implemented [Dieleman et al., 2016]. Consequently, 
(Gap 3) it largely increases memory requirements to save 
multifold feature maps by rotating and repeating original 
feature outputs at each layer. Third, exploiting rotation 
equivariance by acting on filters has become a promising di-
rection [Gens and Domingos, 2014; Marcos et al., 2017]. Alt-
hough rotating convolutional kernels can achieve local sym-
metries among different orientations at each convolutional 
layer, (Gap 4) these solutions generally limit the depth and 
the global rotation equivariance of networks due to the di-
mensionality explosion and the exacerbating noise from ori-
entation pooling operations. 
 This paper proposes corresponding solutions to the above 
four gaps, inspired by group equivariant CNNs for general 
image classification [Cohen and Welling, 2016]. For Gap 1, 
we build a symmetry group by incorporating translations, ro-
tations and reflections together to significantly increase the 
utilization of each kernel and reduce the numbers of filters. 
For Gap 2, we design strong layerwise constraints to guaran-
tee networks be equivariant at each layer with rigorous math-
ematical proofs. For Gap 3, we perform our equivariant 
transformations on filters, rather than feature maps, in order 
to reduce memory requirements. For Gap 4, our proposed 
group equivariant layers and modules can keep networks 
globally equivariant in an end-to-end fashion. Moreover, 
they can be stacked into deeper architectures for various vi-
sion segmentation tasks, with a negligible computational 
overhead over regular CNN-based counterparts. 
 By integrating the above solutions, we propose a novel 
group equivariant segmentation framework by designing new 
additional group layers and modules with rigorous mathemat-
ical proofs, according to inherent symmetries in medical im-
ages. As shown in Figure 1, the bottom Group Res-UNet 
based on our proposed framework can consistently predict 
two liver tumor regions with rotated equivariant results and 
achieve more accurate segmentation performance. The main 
contributions of this work are summarized below: 
 We propose novel group equivariant segmentation 

CNNs going beyond the concept of regular CNNs. Ac-
cordingly, more inherent symmetries existing in medical 
images are captured at each layer in more effective ways. 

 The proposed group layers can significantly improve the 
degree of weight sharing and increase expressive capac-
ity of segmentation networks. More importantly, the 
group layers of our novel framework can keep whole 
group CNNs globally equivariant for segmentation. 

 This work reveals a common bottleneck of the current 
segmentation networks, that is, localizing tumors is easy, 
but delineating tumor boundaries is difficult. To mitigate 
this problem, all the proposed group layers can be easily 
generalized in these modern CNN-based segmentation 
architectures with better performance. 

 Our empirical study shows that (1) the proposed GER-
UNet can achieve the state-of-the-art performance on the 
real-world clinical hepatic tumor data in different evaluation 
metrics; and (2) group segmentation CNNs can significantly 
outperform the baseline regular CNN-based counterpart. 

2 Related Work 
In this section, we briefly review equivariance of regular 
CNNs and introduce a new symmetry group concept. Then, 
data augmentation is discussed as a widely used approach. 
Furthermore, we discuss some works in rotation equivariant 
networks and novel group equivariant CNNs. 

2.1 Equivariant Property & Symmetry Group  
We usually regard CNNs having translation invariance be-
cause each weight-shared feature kernel can detect the same 
object that could appear in any position of the whole input 
image [LeCun et al., 2015]. In other words, when shifting the 
input image, regular CNNs can give a corresponding shift in 
the output feature maps, which is also called translational 
equivariance. Nevertheless, many visual images, including 
medical ones, exhibit not only translation equivariance but 
also rotation and reflection symmetries as well [Veeling et al., 
2018]. The current CNN models lack such equivariant prop-
erties and have to learn more convolutional kernels with more 
training data to make up for the gaps. If we replace the tradi-
tional single translational symmetry by a symmetry group, 
which covers more equivariant properties such as translations, 
rotations and reflections, to convolute each input data, it 
would generate more powerful and predictable performance 
in various vision tasks. Therefore, the current regular CNNs 
can be regarded as a special case of group CNNs.  

2.2 Data Augmentation & Rotation Equivariant 
Networks 

Data augmentation is a widely used technique to train a more 
robust neural network model for real applications [Ciresan et 
al., 2013]. In essence, data augmentation methods mainly 
rely on random transformations on original data to increase 
the amount of data. Although these simply augmented data 
do help improve performance, they require a larger model ca-
pacity to save such copies of each feature filter for all poten-
tial transformations. Actually, this soft constraint hardly 
guarantees equivariant properties on test data, even on train-
ing data, as shown in Figure 1. In addition, for the same prob-
lem, Dieleman et al. [2016] proposed a rotation equivariant 



 
 

network by directly rotating each feature map at every layer, 
but this would largely increase memory requirements. Re-
cently, some rotated equivariant networks [Gens and Domin-
gos, 2014; Marcos et al., 2017] rotate convolutional kernels 
to achieve local symmetries among all orientations. As a re-
sult, the network architectures are usually very shallow and 
the noise generated from intermediate layers makes it diffi-
cult to maintain global equivariance. 

2.3 Group Equivariant CNNs 
In a groundbreaking work [2016], Cohen and Welling intro-
duced group equivariant convolutional neural networks by 
exploiting symmetry groups for general image classification. 
In particular, the group convolution operation can increase 
the representation capacity of the network without increasing 
the number of parameters. Based on this theory, there are a 
growing numbers of works for various computer vision ap-
plications [Veeling et al., 2018; Li et al., 2018; Winkens et 
al., 2018; Winkels and Cohen, 2019]. Among them, in terms 
of segmentation tasks, Veeling et al. [2018] directly utilized 
the classification network proposed in [Cohen and Welling, 
2016] to distinguish each input patch cropped from the whole 
image for segmentation. Furthermore, Xiaomeng Li et al. 
[2018] proposed an automatic skin lesion segmentation 
method. Although the work proposes a deeply supervised 
learning model, it does not give an accurate interpretation 
with rigorous mathematical proofs. Similarly, a short paper 
[Winkens et al., 2018] proposes to improve semantic seg-
mentation performance by exploiting rotation and reflection 
symmetries, but it lacks detailed method illustrations and suf-
ficient experimental verification. 
 In contrast to above work, our proposed segmentation 
framework has extended the theory of group equivariance 
[Cohen and Welling, 2016] from image classification to se-
mantic segmentation, by further devising group equivariant 
Up-sampling, Output and Skip Connection modules for fea-
ture decoding and fusion, with rigorous mathematical proofs. 
Moreover, our methodology belongs to image-based segmen-
tation category by exploiting an efficient and end-to-end seg-
mentation network acting on the whole image. In the next 
section, we demonstrate these group modules from our 
framework in detail, and then construct a novel Group Res-
UNet for hepatic tumor segmentation. The implementation 
details will be made available online 
(https://github.com/shuchao1212/GER-UNet). 

3 The Proposed Group Equivariant Segmen-
tation Framework  

This section first introduces mathematical convolution for-
mulas for signal and image processing, and then discusses 
symmetric properties with kernel-based equivariant opera-
tions. Then, we propose several core modules by adding 
layerwise symmetry constraints into our framework. Finally, 
we design a Group Equivariant Res-UNet (named GER-UNet) 
as a simple example to illustrate how to make these core mod-
ules work together for medical tumor segmentation tasks with 
the global equivariance. 

3.1 Mathematical Convolution 
In mathematics, the convolution operation is a main tool for 
signal analysis and processing due to signal attenuation over 
time. For example, assume that an input signal function 𝑓(𝑡) 
and a time response function 𝑔(𝑡) are given, then the output 
signal at time 𝑇 is calculated as follows: 

[𝑓 ∗ 𝑔](𝑇) = ∫ 𝑓(𝑡)𝑔(𝑇 − 𝑡)𝑑𝑡
ାஶ

ିஶ
.                (1) 

 Therefore, we can observe that the convolution operation 
consists of two parts: a function rollover (from 𝑔(𝑡) to 𝑔(−𝑡)) 
(including a further sliding (𝑔(𝑇 − 𝑡))) and an integral (or 
weighted sum). Based on this theory, current CNNs also ex-
ploit it from the continuous form to the discrete form: 

ൣ𝑓 ∗ 𝑤
(௧)

൧(𝑥) = ∑ ∑ 𝑓(𝑦)𝑤,
(௧)

(𝑥 − 𝑦)(షభ)

ୀଵ௬∈ℤమ ,    (2) 

where 𝑓: ℤଶ → ℝ(షభ) is the input function at the 𝑡௧ layer 
which means that the stack of feature maps 𝑓 outputted at the 
(𝑡 − 1)௧ layer returns a 𝐾(௧ିଵ) vector at each pixel coordi-
nate (𝑢, 𝑣) ∈ ℤ2; similarly, 𝑤

(௧)
: ℤଶ → ℝ(షభ)

 is the 𝑖௧ convo-
lutional kernel function at the 𝑡௧ layer. Therefore, for the 
translation equivariance of regular CNNs, we can see that the 
translation followed by a convolution is the same as a convo-
lution followed by a translation [Cohen and Welling, 2016]: 

ቂ[𝐿௧𝑓] ∗ 𝑤
(௧)

ቃ (𝑥) = ∑ ∑ 𝑓(𝑦 − 𝑡)𝑤,
(௧)(𝑥 − 𝑦)(షభ)

ୀଵ௬∈ℤమ   

                              = ∑ ∑ 𝑓(𝑦)𝑤,
(௧)((𝑥 − 𝑡) − 𝑦)(షభ)

ୀଵ௬∈ℤమ   

                           = ቂ𝐿௧ൣ𝑓 ∗ 𝑤
(௧)

൧ቃ (𝑥),                             (3) 

where 𝐿௧ is a translation operator by 𝑦 → 𝑦 + 𝑡 and 𝑓 ∗ 𝑤
(௧) is 

also a function on ℤଶ. However, this property from regular 
CNNs is not equivariant to a rotation operator 𝐿. On the con-
trary, this process has to be done by rotating the kernel 𝑤

(௧), 

ቂ[𝐿𝑓] ∗ 𝑤
(௧)

ቃ (𝑥) = 𝐿 ቂ𝑓 ∗ ൣ(𝐿)ିଵ𝑤
(௧)

൧ቃ൨ (𝑥),      (4) 

where it is shown that rotating the input feature maps 𝑓 and 
then convoluting with a filter kernel 𝑤

(௧) is the same as the 
rotation operator by 𝐿 of the convolution between the origi-
nal input 𝑓 and the inverse-rotated filter kernel (𝐿)ିଵ𝑤

(௧). 
 Analogously, the process can also be done for reflection 
operators with the above formula. Therefore, to achieve these 
kinds of goals without additionally learning rotated and re-
flected copies of the same filter by utilizing more training 
data, we introduce group operations on symmetry groups to 
replace these conventional operations in regular CNNs, 
which can equip CNNs with more equivariant properties. 

3.2 Core Modules in the Proposed Framework 
The Group Input Layer In our framework, all network op-
erations are based on the same symmetry group, which con-
sists of translations, rotations by multiples of 𝜋/2 and reflec-
tions. So, all convolutional input comes into groups of 
‖𝐺 = {𝑔}‖ = 8, corresponding 4 pure rotations and their own 
roto-reflections. Among all group convolution operations 𝐺, 
only the first layer is applied on original input  images, which 
is called the Group Input Layer. Therefore, in this ℤଶ → 𝐺 
convolution process, we convolute the input image with 8 ro-
tated and reflected versions of the same kernel, e.g., 𝑤

(ଵ) in 
Equation (5). And the whole group input layer is visually 



 
 

demonstrated in Figure 2 where the input image is of size 
448 × 448 × 3 and the kernel size is 3 × 3 × 3. In addition, 
stride=1 and padding=1 are also set to control the size of out-
put like regular CNNs. 

ൣ𝑓 ∗ 𝑤
(ଵ)

൧(𝑔) = ∑ ∑ 𝑓(𝑦)𝑤,
(ଵ)

(𝑔ିଵ𝑦)(బ)

ୀଵ௬∈ℤమ ,         (5) 

where 𝐾() is the number of channels from input images. 
Note that, in this layer, the input image 𝑓: ℤଶ → ℝ(బ)

 and the 
filter 𝑤

(ଵ)
: ℤଶ → ℝ(షభ)

 all belong to functions of ℤଶ, but 𝑓 ∗
𝑤

(ଵ) is a function on group 𝐺. And, the equivariance (under 
translations, rotations and reflections) of the group input layer 
can be derived by analogy to Equation (3), with any prede-
fined group operators, e.g., 𝐿 : 𝑦 → 𝑟𝑦 as follows: 

ቂ[𝐿𝑓] ∗ 𝑤
(ଵ)

ቃ (𝑔) = ∑ ∑ 𝑓(𝑟ିଵ𝑦)𝑤,
(ଵ)(𝑔ିଵ𝑦)(బ)

ୀଵ௬∈ℤమ   

                               = ∑ ∑ 𝑓(𝑦)𝑤,
(ଵ)((𝑟ିଵ𝑔)ିଵ𝑦)(బ)

ୀଵ௬∈ℤమ  

                            = ቂ𝐿ൣ𝑓 ∗ 𝑤
(ଵ)

൧ቃ (𝑔).                           (6) 

The Group Hidden Layer Different with the group input 
layer, the next hidden layers are all operated on feature map 
groups based on the outputs from the previous layer. So, we 
call this 𝐺 → 𝐺 convolution process as the Group Hidden 
Layer. Because different kernels are designed for different 
orientations of input group feature maps, we need to convo-
lute the input feature maps with 8 rotated and reflected sym-
metric group operations 𝐺 for each orientation. The details 
about this group hidden layer can be further understood in the 
following equation and the visually convolutional represen-
tation as shown in Figure 3. Therefore, all the layers and fil-
ters after the first group input layer are all functions on 𝐺. 

ൣ𝑓 ∗ 𝑤
(௧)

൧(𝑔) = ∑ ∑ 𝑓(ℎ)𝑤,
(௧)

(𝑔ିଵℎ)(షభ)

ୀଵ∈ீ .      (7) 

 Similar to Equation (5), the equivariance (under transla-
tions, rotations and reflections) of the group hidden layer can 
be derived with any predefined group operators 𝐿: ℎ → 𝑟ℎ as 
follows: 

 ቂ[𝐿𝑓] ∗ 𝑤
(௧)

ቃ (𝑔) = ∑ ∑ 𝑓(𝑟ିଵℎ)𝑤,
(௧)(𝑔ିଵℎ)(షభ)

ୀଵ∈ீ   

                               = ∑ ∑ 𝑓(ℎ)𝑤,
(௧)((𝑟ିଵ𝑔)ିଵℎ)(షభ)

ୀଵ∈ீ  

                            = ቂ𝐿ൣ𝑓 ∗ 𝑤
(௧)

൧ቃ (𝑔).                           (8) 

The Group Up-sample Layer Like traditional upsampling 
operations in regular CNNs, e.g., FCNs [Long et al., 2015], 
we can also interpolate pixels into input feature maps with 
different modes such as the nearest and bilinear ones. In order 
to increase the size of outputs after each upsampling opera-
tion, we replace the traditional upsampling process only on 
an orientation by a Group Up-sample Layer over all 8 orien-
tations. To this end, we could upsample symmetric group fea-
ture maps from each orientation respectively, or concatenate 
all group feature maps at the current layer and interpolate 
them all at once, and then separate them into 8 orientations 
again. Therefore, the upsampling operation is equivariant by 
acting on each group feature position from group equivariant 
feature maps. Note that this process is performed in sequence 
for keeping the group up-sample layer equivariant as well. 

Group Skip Connections Skip connections have been 
proven effective in segmentation networks for recovering de-
tailed features by combining encoder and decoder feature 
maps, for example, UNet [Ronneberger et al., 2015] and 
FCNs [Long et al., 2015]. Because of regular skip connec-
tions acting on two individual feature output blocks, we ex-
tend this operation on group outputs over all the orientations. 
In order to connect two sets of group convolutional outputs 
from the encoder and the decoder stages, we add or concate-
nate them together, following each orientation. In this way, 
our Group Skip Connections can obtain more details from 
each symmetry property, leading to more accurate segmenta-
tion predictions. Meanwhile, the sum of two group equivari-
ant feature maps is also group equivariant. 

The Group Output Layer This layer is the last layer in our 
framework to generate final segmentation score results, 
called the Group Output Layer. Furthermore, this is a 𝐺 → ℤଶ 
aggregation process, which aims to aggregate all the group 
segmentation outputs over various orientations. More im-
portantly, this aggregation layer is a quite critical step to keep 
our group segmentation framework be equivariant over dif-
ferent rotations and reflections. To this end, we adopt glob-
ally average pooling over each orientation to obtain the 
equivariance for segmentation tasks. In our medical tumor 
segmentation tasks, we utilize the group output layer to trans-
form all the orientation channels into a single pixel-wise 2D 
predicted output map. 

𝑓(𝑥) =
ଵ

‖ீ‖
∑ 𝑓(ℎ)∈ீ .                      (9) 

 Note that we ignore the group max-pooling layer in our 
segmentation framework due to its significant reduction in 

  
 

Figure 3: Visually convolutional representation of the Group 
Hidden Layer in our framework 

 
 

Figure 2: Visually convolutional representation of the Group In-
put Layer in our framework 



 
 

resolution of feature maps, which is not conducive for seg-
mentation [Fu et al., 2019], using our group hidden layer with 
different strides instead. In addition, other batch normaliza-
tion operations and non-linear pointwise activations (e.g., 
ReLU) are also locally equivariant on each symmetry group 
𝐺, which can allow all these group layers to be stacked for 
much deeper group CNN segmentation models with global 
equivariance. 

3.3 A GER-UNet Model 
To validate our proposed group equivariant segmentation 
framework in improving segmentation performance, we de-
sign a GER-UNet model for medical tumor segmentation, 
which is based on ResNet blocks and our proposed core mod-
ules. The whole architecture of our proposed GER-UNet is 
shown in Figure 4, where all convolutions, batch normaliza-
tions, activation operations and other layers are constructed 
by our group equivariant counterparts. The architecture con-
sists of 1 group input layer, 8 ResNet blocks, numerous group   
hidden layers, 3 group up-sample layers, 1 group output layer 
and others for the pixel-wise segmentation. 

4 Experiments and Analysis 
Extensive experiments are conducted on a real clinical he-
patic tumor CT dataset, to answer the following questions: 1) 
is the whole segmentation framework equivariant to rotation? 
2) can group equivariant CNN model outperform its regular 
CNN counterpart for segmentation? 3) is such a simple GER-
UNet model better or more competitive than the state-of-the-
art methods in this task? 

4.1 Experimental Settings 
Datasets & Evaluation Metrics To evaluate our proposed 
group equivariant segmentation framework, a challenging 
liver tumor segmentation dataset [Bilic et al., 2019] is used 
in all experiments. This dataset includes 131 contrast-en-
hanced abdominal 3D CT scans, which are collected from 
131 studied subjects who were suffering from different he-
patic tumor diseases. Another challenge is that the images in 
this dataset come from different medical imaging acquisition 

devices around the world. In addition, among all CT slices, 
there are only 7190 slices with tumor information. To com-
prehensively compare tumor segmentation results among dif-
ferent segmentation methods, we use the most complete eval-
uation criteria in image segmentation tasks [Gu et al., 2019; 
Schlemper et al., 2019], including Dice, Hausdorff distance, 
Jaccard, Precision (called positive predictive value), Recall 
(called sensitivity coefficient or true positive rate), Specific-
ity (called true negative rate) and F1 score. Among them, the 
smaller the Hausdorff distance, the better the segmentation 
results, for the others the opposite is the case. 

Parameter Setting The dataset is randomly split into 4:1 for 
model training and testing. All experiments for all segmenta-
tion methods were conducted on Nvidia Tesla Volta V100. 
For our GER-UNet and the baseline regular R-UNet models, 
the batch size is set to 4 for training and the initial learning 
rate is 2e-4. The learning rate will gradually decrease as the 
number of training times increases. The training process is 
performed over 300 epochs, with an early stopping strategy 
for obtaining the optimal parameters. The widely used data 
augmentation techniques are also used to train the regular R-
UNet model and others. In addition, the basic cross entropy 
loss function is used to compute the loss errors after each 
epoch. Also, we adopt the common Adam optimizer to update 
the whole network parameters. The other methods chosen for 
comparison are implemented following their papers and 
codes on the same dataset and settings with ours. 

Comparison Methods We select 9 state-of-the-art segmen-
tation methods, to compare with ours by considering the fol-
lowing representative perspectives: (1) U-Net and its vari-
ants: U-Net [Ronneberger et al., 2015], Attention UNet 
[Schlemper et al., 2019] and Nested UNet [Zhou et al., 2018]; 
(2) Context Based Methods: R2U-Net [Alom et al., 2019], 
CE-Net [Gu et al., 2019] and Self-attention model [Wang et 
al., 2018]; (3) Attention Based Methods: SENet [Hu et al., 
2018], DANet [Fu et al., 2019] and CS-Net [Mou et al., 2019]. 

4.2 Results and Discussion 
All the experimental results are presented in Table 1. And all 
discussions and findings will be reported as follows accord-
ing to the three questions raised before these experiments. 

 
 

Figure 4: The architecture of our proposed Group Equivariant Res-UNet (named GER-UNet) for medical tumor segmentation 



 
 

Finding 1: Robust Equivariance of Our Proposed Seg-
mentation Framework 
To evaluate the stability of predictions and the equivariance 
under rotation of the same input, we present a visual analysis 
shown in Figure 1. Although data augmentation techniques 
are used on each training image and different at each epoch, 
the well-trained regular Res-UNet gives very different pre-
dictions between an original test image and its rotated ver-
sion, especially, for boundary regions. By contrast, the same 
Res-UNet architecture with our proposed group layers in-
stead can be equivariant to the rotation operation on the test 
image, allowing us to obtain the same predictions by rotating 
the corresponding output score map. More importantly, by 
encoding these translation, rotation and reflection equivari-
ances on each symmetry group 𝐺, the learned group CNN 
model can accurately discriminate object regions with much 
clearer boundaries, which looks more like the corresponding 
ground truth  in Figure 1. In short, our proposed segmentation 
framework can keep learned group CNN model be equivari-
ant for input transformations and largely improve the seg-
mentation performance over its standard CNN counterpart. 

Finding 2: Overwhelmingly Superior to Its Regular CNN 
Counterpart 
As mentioned before, regular CNNs can be regarded as a spe-
cial case of group CNNs because the former has only a single 
translation equivariance, whereas ours has more equivariant  
properties. As an ablation study, to fairly evaluate differences 
between them, we design a novel and standard UNet archi-
tecture based on ResNet, called regular R-UNet (or Res-
UNet) and then we replace all these basic operations by our 
group equivariant layers (see Section 3). Meanwhile, in order 
to keep the model parameters consistent between them, we 
reduce the filter size of each layer to 1 √8⁄  due to 8 symmetry 
operations in our group 𝐺 for each filter, with total 12.78M 
(ours-w.-add) vs 12.75M parameters (Regular R-UNet). As 
shown in Table 1, we observe that our group equivariant seg-
mentation model (GER-UNet) performs consistently better 
than its regular CNN version (Regular R-UNet). In particular, 

in terms of the important Dice similarity coefficient and Pre-
cision indexes, ours is 4.03 percent and 7.41 percent higher 
than its corresponding Regular R-UNet. This indicates that 
our novel group equivariant operations can significantly im-
prove the performance of medical tumor segmentation in 
comparison to regular CNN-based layers. 

Finding 3: More Precise than the State-of-the-art Meth-
ods 
The current novel and popular segmentation methods not 
only build their network architectures deeper and wider based 
on UNet or FCNs, but also embed more advanced techniques 
into networks, as illustrated in the compared methods. To 
evaluate these state-of-the-art approaches and ours, we have 
trained and tested them on the same clinical medical tumor 
dataset. As shown in Table 1, results indicate that our pro-
posed group equivariant GER-UNet performs consistently 
better than all the compared methods under different evalua-
tion metrics for hepatic tumor segmentation, with the best 
Dice with 86.63%, Jaccard index with 80.31%, Precision 
with 87.23%, F1 score with 87.51% and the shortest 
Hausdorff Distance with 24.79 pixels. Overall, the average 
gain of our GER-UNet over all the compared methods (in-
cluding the baseline Regular R-UNet) can achieve obvious 
improvements, which respectively are 4.18% in Dice, 7.40% 
in Hausdorff Distance, 6.02% in Jaccard, 8.60% in Precision, 
0.06% in Specificity and 3.88% in F1 score. This illustrates 
that our group equivariant segmentation model can accu-
rately capture hepatic tumor positions and give more refined 
tumor boundary delineations. In other words, it can also sig-
nificantly reduce the rates of false positive and false negative 
results for early medical tumor detection and segmentation. 
The superior performance of our GER-UNet stems from the 
increased parameter sharing by encoding more robust sym-
metric operations for each convolutional filter. Meanwhile, 
we also observe that our group equivariant model has a faster 
convergence rate with fewer iterations (about 80 epochs) 
compared to others (about 300 epochs) based on standard 
CNNs. For another ablation study, we updated skip connec-

  Methods/Metrics Dice Hausdorff 
Distance Jaccard Precision Recall Specificity F1 

T
he

 S
ta

te
-f

-t
he

-a
rt

 

U
N

et
-s

 U-Net [Ronneberger et al., 2015] 80.27 40.13 71.30 74.95 89.74 99.86 81.68 
Attention UNet [Schlemper et al., 2019] 81.81 34.23 73.39 77.18 89.84 99.87 83.03 

Nested UNet [Zhou et al., 2018] 80.14 36.65 71.29 74.79 89.43 99.86 81.46 

C
on

te
xt

 

R2U-Net [Alom et al., 2019] 78.75 35.43 69.27 72.84 89.56 99.83 80.34 
CE-Net [Gu et al., 2019] 84.43 27.13 76.75 81.34 89.77 99.91 85.35 

Self-attention [Wang et al., 2018] 83.52 31.56 75.83 81.16 88.37 99.91 84.61 

A
tt

en
tio

n SENet [Hu et al., 2018] 83.42 30.45 75.58 79.95 89.44 99.90 84.43 
DANet [Fu et al., 2019] 85.48 27.50 78.55 84.05 88.79 99.93 86.35 

CS-Net [Mou et al., 2019] 84.12 26.42 76.21 80.23 90.63 99.90 85.11 

A
bl

at
io

n 
St

ud
y Regular R-UNet 82.60 32.44 74.77 79.82 88.52 99.90 83.95 

GER-UNet (ours-w.-add) 86.63 24.79 80.31 87.23 87.79 99.95 87.51 
GER-UNet (ours-w.-concat) 86.16 26.83 79.77 86.27 88.18 99.94 87.21 

 
Table 1: Performance of segmentation methods on hepatic tumor segmentation dataset, measured by widely used evaluation metrics. 
Red numbers represent the best results and blue means the second best. Note that Hausdorff Distance uses pixel units and others %. 



 
 

tions by concatenating both feature map blocks from encod-
ing and decoding stages, and it (ours-w.-concat) also achieves 
the best performance shown in Table 1. 
 In short, a simple GER-UNet has already fully demon-
strated the potential of our proposed group equivariant seg-
mentation framework. Moreover, we believe that the pro-
posed group network framework and group operations would 
yield better results when deployed in deeper networks or 
combined with modern popular techniques (e.g., Non-local 
models, attention schemes and context aggregations). 

5 Conclusions 
To learn more precise representations for medical tumor seg-
mentation, we have proposed a novel segmentation CNNs be-
yond regular CNNs by leveraging more inherent symmetries 
in medical images. To this end, we have developed kernel-
based equivariant operations on every orientation, which can 
also guarantee whole segmentation networks being globally 
equivariant by encoding layerwise symmetry constraints at 
each group layer. This work not only dramatically reduces the 
redundancy of network filters, but also reveals a common 
bottleneck of current segmentation networks. Empirical eval-
uations on real clinical data have also shown the superiority 
of our novel group CNNs for medical tumor segmentation. 
With the proposed group up-sample layer, the group output 
layer and group skip connections, our group segmentation 
framework can be embedded into any popular CNN-based 
segmentation architectures. 
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